КаталогИндекс раздела
НазадОглавлениеВперед


Лекция 5: Представление знаний в интеллектуальных системах (часть 2)


  1. Продукционные системы
  2. Логический подход. Представление простых фактов в логических системах
  3. Литература

 
 
 

Продукционные системы

Продукции наряду с фреймами являются наиболее популярными средствами представления знаний в ИИ. Продукции, с одной стороны, близки к логическим моделям, что позволяет организовывать на них эффективные процедуры вывода, а с другой стороны, более наглядно отражают знания, чем классические логические модели. В них отсутствуют жесткие ограничения, характерные для логических исчислений, что дает возможность изменять интерпретацию элементов продукции.

 
 
 

Компоненты продукционных систем

В общем виде под продукцией понимается выражение следующего вида: (i); Q;P;AЮB;N.

Здесь i - имя продукции, с помощью которого данная продукция выделяется из всего множества продукций. В качестве имени может выступать некоторая лексема, отражающая суть данной продукции (например, "покупка книги " ), или порядковый номер продукций в их множестве, хранящимся в памяти системы.

Элемент Q характеризует сферу применения продукции. Такие сферы легко выделяются в когнитивных структурах человека. Наши знания как бы "разложены по полочкам". На одной полочке хранятся знания о том, как надо готовить пищу, на другой как добраться до работы, и т.п. Разделение знаний на отдельные сферы позволяет экономить время на поиск нужных знаний. Такое же разделение на сферы в базе знаний ИИ целесообразно и при использовании для представления знаний продукционных моделей.

Основным элементом продукции является ее ядро: AЮB. Интерпретация ядра продукции может быть различной и зависит от того, что стоит слева и справа от знака секвенции Ю. Обычное прочтение ядра продукции выглядит так: ЕСЛИ А, ТО В, более сложные конструкции ядра допускают в правой части альтернативный выбор, например , ЕСЛИ А, ТО В1, ИНАЧЕ B2. Секвенция может истолковываться в обычном логическом смысле как знак логического следования В из истинного А (если А не является истинным выражением, то о В ничего сказать нельзя). Возможны и другие интерпретации ядра продукции, например А описывает некоторое условие, необходимое для того, чтобы можно было совершить действие В.

Элемент Р есть условие применимости ядра продукции. Обычно Р представляет собой логическое выражение  (как правило предикат). Когда Р принимает значение "истина", ядро продукции активизируется. Если Р "ложно", то ядро продукции не может быть использовано.

Элемент N описывает постусловия продукции. Они актуализируются только в том случае, если ядро продукции реализовалось. Постусловия продкции описывают действия и процедуры, которые необходимо выполнить после реализации В. Выполнение N может проиходить сразу после реализации ядра продукции.

Если в памяти системы хранится некоторый набор продукций, то они образуют систему продукций. В системе продукций должны быть заданы специальные процедуры управления продукциями, с помощью которых происходит актуализация продукций и выбор для выполнения той или иной продукции из числа актуализированных. В ряде систем ИИ используют комбинации сетевых и продукционных моделей представления знаний. В таких моделях декларативные знания описываются в сетевом компоненте модели, а процедурные знания - в продукционном. В этом случае говорят о работе продукционной системы над семантической сетью.

Классификация ядер продукции.

Ядра продукции можно классифицировать по различным основаниям. Прежде всего все ядра делятся на два больших типа: детерминированные и недетерминированные. В детерминированных ядрах при актуализации ядра и при выполнимости А правая часть ядра выполняется обязательно; в недетерминированных ядрах В может выполняться и не выполняться. Таким образом, секвенция Ю в детерминированных ядрах реализуется с необходимостью, а в недетерминированных - с возможностью. Интерпретация ядра в этом случае может, например, выглядеть так: ЕСЛИ А, ТО ВОЗМОЖНО В.

Возможность может определяться некоторыми оценками реализации ядра. Например, если задана вероятность выполнения В при актуализации А, то продукция может быть такой: ЕСЛИ А, ТО С ВЕРОЯТНОСТЬЮ р РЕАЛИЗОВАТЬ В. Оценка реализации ядра может быть лингвистической, связанной с понятием терм-множества лингвистической переменной, например: ЕСЛИ А, ТО С БОЛЬШЕЙ ДОЛЕЙ УВЕРЕННОСТИ В. Возможны иные способы реализации ядра.

Детерминированные продукции могут быть однозначными и альтернативными. Во втором случае в правой части ядра указываются альтернативные возможности выбора, которые оцениваются специальными весами выбора. В качестве таких весов могут использоваться вероятностные оценки, лингвистические оценки, экспертные оценки и т.п.

Особым типом являются прогнозирующие продукции, в которых описываются последствия, ожидаемые при актуализации А, например: ЕСЛИ А, ТО С ВЕРОЯТНОСТЬЮ р МОЖНО ОЖИДАТЬ В.

Дальнейшую классификацию ядер продукции можно провести, опираясь на типовую схему СИИ (рис. 1) Если x и y обозначают любой из блоков рисунка (О,Д,З,Л), то ядро АxЮBy означает, что информация об А берется из блока x, а результат срабатывания продукции В посылает в блок y. Комбинации x и y, осмысленные с точки зрения СИИ, отмечены в табл.1 знаком "+"

 Т а б л и ц а 1

 

 

 

  Рис 1

Рассмотрим часто встречающийся тип продукции А3ЮВ3. В этом случае А3 и В3 представляют собой некоторые фрагменты информации, хранящейся в базе знаний. При сетевом представлении это могу быть фрагменты семантической сети, при логических моделях - формулы того или иного исчисления. Тогда смысл продукции А3ЮВ3 состоит в замене одного фрагмента базы знаний другим. Для актуализации этой продукции необходимо, чтобы в базе знаний существовал фрагмент, совпадающий с А. При поиске в базе знаний А играет роль образца, а процедура такого писка называется поиском по образцу.

 
 
 

Стратегии решений организации поиска

Для иллюстрации поиска предположим, что в базе знаний для представления знаний используется семантическая сеть (рис.2а) и продукция (рис.2б). Поиск А в базе знаний организуется различными способами. Можно, например, сначала искать вершину а. Если в базе знаний такой вершины нет, то поиск заканчивается неудачей. Если вершина а найдена, то ищутся все выходящие из нее дуги, помеченные отношением R3, так как в образце справа от этой дуги стоит вершина x, на месте которой в базе знаний может находиться любая вершина. Если из а не выходит ни одной дуги, помеченной отношением R3, то поиск заканчивается неудачей. Но если такие дуги есть, то происходит переход во все вершины, с которыми вершину а связывает отношение R3, т.е. возникает параллельный процесс поиска. В примере произойдет переход от вершины а к вершинам b и f, из которых начинается поиск выходящих из них дуг, помеченные отношением R1, ведущих в любую вершину, так как в образце далее стоит вершина, которой соответствует свободная переменная y. Далее процесс продолжается аналогичным образом. В примере поиск оказывается успешным. После нахождения А в семантической сети происходит замена, которая определяется правой частью образца. В результате возникает трансформированная сеть (рис. 2в).

Продукция АДЮВЗ может соответствовать процедуре нахождения закономерностей по эмпирическим данным. Логический блок на основании просмотра и анализа данных выдвигает гипотезы и наличии закономерностей и, убедившись в их приемлемости и достаточной обоснованности, записывает их в базу знаний. Аналогично можно интерпретировать и иные типы продукций из таблицы 1.

 

 

 

 

 
 
 

Логический подход. Представление простых фактов в логических системах

Представление - это действие, делающее некоторое понятие воспринимаемым посредством фигуры, записи, языка или формализма. Теория знаний изучает связи между субъектом (изучающим) и объектом. Знание (в объективном смысле) - то, что известно (то, что знаем после изучения).

Представление знаний- формализация истинных убеждений посредством фигур, записей или языков. Нас особенно интересуют формализации, воспринимаемые (распознаваемые) ЭВМ. Возникает вопрос о представлении знаний в памяти ЭВМ, т.е. о создании языков и формализмов представления знаний. Они преобразуют наглядное представление (созданное посредством речи, изображением, естественным языком, вроде английского или немецкого, формальным языком, вроде алгебры или логики, рассуждениями и т.д.) в пригодное для ввода и обработки в ЭВМ. Результат формализации должен быть множеством инструкций, составляющих часть языка программирования.

Представлению знаний присущ пассивный аспект: книга, таблица, заполненная информацией память. В ИИ подчеркивается активный аспект представления: знать должно стать активной операцией, позволяющей не только запоминать, но и извлекать воспринятые (приобретенные, усвоенные) знания для рассуждений на их основе. Следовательно, истоки представления знаний - в науке о познании, а его конечная цель - программные средства информатики. Во многих случаях подлежащие представлению знания относятся к довольно ограниченной области, например:

Для характеристики некой области говорят об "области рассуждений" или "области экспертизы". Численная формализация таких описаний в общем мало эффективна. Напротив, использование символического языка, такого, как язык математической логики, позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действительно являются активными операциями получения новых знаний из усвоенных.

В силу всех этих причин математическая логика лежит в основе различных представлений в ИИ. Данный раздел посвящен представлению простых фактов с помощью логики предикатов. Логическое представление служит также отправной точкой для других представлений (таких как "сетевые" и "объективные"), используемых в ИИ.

Синтаксис логики предикатов.

Язык логики предикатов задается синтакисом. Для представления знаний базисные синтаксические категории языка изображаются такими символами, которые несут достаточно четкую информацию и дают довольно ясную картину об области рассуждений (экспертизы).

Логика предикатов, называемая также логикой первого порядка, допускает четыре типа выражений.

Символы, которые применяются для представления констант, переменных, предикатов и функций, не являются "словами русского языка". Они суть символы некоторого представления - слова "объектного языка" (в нашем случае языка предикатов).

Представление должно исключать всякую двусмысленность языка. Поэтому имена индивидуумов содержат цифры, приписываемые к именам совокупностей. Жак_1 и Жак_2 представляют двух людей с одинаковыми именами. Эти представления суть конкретизации имени совокупности "Жак". Предикат - это предикатное имя вместе с подходящим числом термов. Предикат называют так же предикатной формой.

 
 
 

Примеры применения логики для представления знаний.

Проиллюстрируем синтаксис логики предикатов, сопоставляя нескольким русским фразам их перевод на язык логического формализма.

(Сравнивая два последних примера, видим, что замена прилагательного "каждый" на "некоторые" влечет при переводе не только замену квантора " на $, но изамену связки É на Ù. Это иллюстрирует тот факт, что перевод фразы естественного языка на логический, вообще говоря, не является трафаретной операцией.)  

 
 
 

Литература

  1. F. Hayes-Roth, N. Jacobstein. The State of Enowledge-Based Systems. Communications of the АСМ, March, 1994, v.37, n.3, рр.27-39.
  2. Р. Harmon. The Size of the Commercial AI Market in the US. Intelligent Software Strategies. 1994, v.10, n.1, рр. 1-6.
  3. Expert system saves 20 million L on pipeline management. C&I July, 1994, р.31.
  4. Д. Поспелов . "Справочник по ИИ том-2".

НазадОглавлениеВперед
КаталогИндекс раздела